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1 Introduction

This deliverable consists of the final implementations of mapping and localization func-

tionalities for tasks T3.1, T3.2 and T3.3 in WP3 – including software for constructing and

localizing in maps that are purely geometric as well as maps with high-fidelity rendering

qualities, and constructing and using maps of dynamics.

We provide links to the software repositories used by the implementation, and some

examples of the running system.

Please note that the technologies, and experimental results, are further described in

D3.4.

2 Mapping and localization

2.1 Baseline lidar mapping and localization

The baseline mapping and localization stack used by the DARKO robot, as already reported

in D3.1, uses a graph-based SLAM method [1, 2] based on NDT-OM sub-maps [3], im-

plemented in the robust_mapping repository. For localizing in the NDT-OM map graph,

we use a graph-aware version of NDT-MCL [4] (graph_map). The output of the baseline

mapping system is a 3D NDT-OM map (for localization), a 3D point cloud map (mainly for

visualization), and a 2D grid map that can be readily integrated with the motion planners

from WP6.

This software was part of D3.1 (“Prototype mapping system implementation”). Example

output can be seen in Figure 1.

2.2 E�cient neural lidar map reconstruction

Storing detailed large-scale maps is often memory-consuming. Motivated by recent neural

implicit representation, we propose a novel data structure combined with neural networks

to represent the map implicitly. This method achieves better or competitive quality of the

reconstructed 3D surface, compared to recent baselines [5], while consuming minimal

memory.

The core concepts of our work, named 3QFP [6], are illustrated in Figure 2. At its

core, 3QFP uses a data structure referred to as Tri-Quadtrees, where the whole scene is

projected to multiple levels of axis-aligned planar quadtrees. When querying some point in

the scene, the point feature will touch different levels of feature grids. The feature vectors

surrounding the query point are interpolated and fed into a small neural network which

decodes a signed distance value, which can then be used to reconstruct a surface mesh.

Our method achieved detailed descriptions of the scene while consuming less memory.

As shown qualitatively in Figure 3, our method uses much fewer parameters but achieves

better or competitive reconstruction quality compared to alternative methods, including

the recent neural baseline SHINE-mapping [5] and a more traditional ball pivoting mesh

reconstruction.

The implementation of 3QFP can be found at https://github.com/ljjTYJR/3QFP.

2.3 High-fidelity RGBD mapping and pose tracking

In addition to accurate geometric reconstruction as per above, we have also explored how

to reconstruct the scene with high-fidelity appearance, aiming to enhance localization

and enable additional applications based on rendering novel RGB views from unseen
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Figure 1: Geometric 2D and 3D maps from Milestone 3 at the Deutsches Museum in Munich,

created with the DARKO prototype mapping system from T3.1. Left to right: 3D point cloud

map (for visualisation), 3D NDT-OM map (for localization), 2D occupancy grid (for motion

planning).

Figure 2: Overview of 3QFP [6]. We represent the scene with three planar quadtreesM ℓ
i
,

i ∈ {X Z , Y Z , X Y } (where ℓ represents the quadtree depth). We store features in the deepest

H levels of resolution of quadtrees. When querying for a point p, we project it onto planar

quadtrees to identify the node containing p at the level ℓ. The feature of p is then calculated

by bilinear interpolation based on the queried location and vertex features. We add features

at the same level and concatenate among different levels. Concatenated with the positional

encoding γ(p), p ’s feature (Φ(p)) is fed into a small MLP (FΘ) to predict the signed distance

value (SDF). The learnable features stored in the quadtree nodes and the network parameters

are learned by test-time optimization using the loss function Lbce.

Figure 3: Examples of mesh reconstructions from Milestone 3 at the Deutsches Museum. From

left to right: our 3QFP method [6] (< 1 h processing, 5.9 MB RAM), SHINE-mapping [5]

(< 1 h processing, 49 MB RAM), ball pivoting reconstruction (> 4 h processing).
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Figure 4: Overview of our mapping and localization framework using Gaussian splats [7]. Our

method takes RGBD frames as inputs. During mapping, when given a posed RGBD frame, we

first render the opacity image, color image and depth image. Then we compare them with the

ground truth to densify the existed map. During tracking, we minimize the color and depth

re-rendering loss to optimize the camera pose, and the pose is fed to the mapping pipeline.

Figure 5: Example output of maps made with Gaussian splatting at Milestone 3 in Deutsches

Museum.

viewpoints [7]. We apply 3D Gaussians [8] as representation primitives to create high-

fidelity maps. An overview of our method is shown in Figure 4. This method consists of

two parts: mapping and localization.

For the mapping part, given a new RGBD frame with known pose, we expand the map

by evaluating the rendered image at the new pose. We add new Gaussians based on two

criteria: where the rendered opacity is low (to complete unobserved regions) and where

the difference between the rendered RGB/depth image and the live inputs is large (to

improve the rendering quality).

For localization, we localize the camera by comparing the rendered image with the

live input.

Second, we introduce extra regularization parameters to alleviate the “forgetting”

problem during contiunous mapping, where parameters tend to overfit the latest frame

and result in decreasing rendering quality for previous frames.

In quantitative experiments on benchmark datasets (see D3.4 and Sun et al. [7]), our

method achieves better rendering qualities in appearance and geometry, compared to

other NeRF-based and state-of-the-art 3DGS-based SLAM methods. Figure 5 shows some

examples renderings from Milestone 3.

The code can be found at https://github.com/ljjTYJR/HF-SLAM.
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3 Maps of Dynamics

In this section, we describe DARKO’s implementation of maps of dynamics (MoDs) from

T3.3. MoDs are a class of general representations of place-dependent spatial motion

patterns, learned from prior observations). Within the scope of DARKO, we have in

particular applied MoDs for long-term human motion prediction (LHMP).

In addition to the implementations described in the following, deliverable D3.4 further

describes the underlying technologies and experimental validation, and includes addi-

tional work on maps of dynamics that is done within DARKO but not included in the

implementation covered by this deliverable (D3.3).

3.1 CLiFF-LHMP

Building on the code base from D3.1, we have developed a new MoD-informed human

motion prediction approach, named CLiFF-LHMP [9], which has been shown to be data

efficient, explainable, and insensitive to errors from an upstream tracking system.

This approach uses CLiFF-map, a specific MoD trained with human motion data

recorded in the same environment. CLiFF-maps represent speed and direction jointly

as velocity V = [θ ,ρ]T using direction θ and speed ρ, where ρ ∈ R+, θ ∈ [0,2π). For

long-term human motion prediction, we bias a constant velocity prediction with samples

from the CLiFF-map to generate multi-modal trajectory predictions.

In two public datasets we show that this algorithm outperforms the state of the art for

predictions over very extended periods of time, achieving 45 % more accurate prediction

performance at a 50 s prediction horizon compared to the baseline approach [10].

The code can be found in https://github.com/test-bai-cpu/CLiFF-LHMP/.

3.2 LaCE-LHMP

Detecting and identifying abnormal trajectories is a major challenge in motion modeling

and prediction. Existing methods typically identify abnormal motions by comparing them

to expected behaviours [11] or measuring deviations from normal motions [12]. However,

these approaches require labelled data for supervised learning.

The CLiFF-map representation outlined above may struggle to differentiate dominant

flow from irregular motion, and therefore the prediction accuracy may be affected by

anomalous data. To address these limitations, we propose the Laminar Component En-

hanced LHMP approach (LaCE-LHMP) [13]. This approach is inspired by data-driven

airflow modelling, which estimates laminar and turbulent flow components and uses

predominantly the laminar components to make flow predictions. Based on the hypothesis

that human trajectory patterns also manifest laminar flow (that represents predictable

motion) and turbulent flow components (that reflect more unpredictable and arbitrary

motion), LaCE-LHMP extracts the laminar patterns in human dynamics and uses them for

human motion prediction. The framework of LaCE-LHMP is presented in Figure 6.

The code can be found in https://github.com/test-bai-cpu/LaCE-LHMP.

4 Reliability-aware mapping and safe localisation

4.1 Localization risk prediction and mitigation

In addition to what was reported in D3.2, the final implementation of localization quality

assessment includes an extended localization risk map representation that includes the

level of dynamics in the risk assessment in addition to the level of alignability. We quantify
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Figure 6: Diagram illustrating the training and prediction phases of the LaCE-LHMP approach.

In the training phase, observed trajectories (a) are used. Velocity observations, which are

depicted in (c) for (x , y) and (d) for ω-ν distribution, are clustered using K-means into K

clusters, shown in (b). From each cluster’s joint ω-ν distribution, a discrete ω-ν histogram Γ R

is estimated to extract the laminar component Γ L , as shown in (e). The directions with the

highest likelihood in Γ L are represented by colored arrows in the LaCE model (f). The LaCE

model is then utilized for prediction.

dynamics by relying on the independent Markov chain approach (iMac) [14], although

our implementation differs in some aspects from the original implementation in the

ndt_core_public repository listed below. We have also introduced a novel probabilistic

model in the form of a Bayesian network that enables the prediction of localization errors

given the conditions of the environment. This is further described in D3.4.

The code can be found at:

• https://gitsvn-nt.oru.se/darko/software/alignability

• https://gitsvn-nt.oru.se/darko/software/risk_map.git

• https://gitsvn-nt.oru.se/software/ndt_core_public.git (branch nice-devel)

4.2 Map quality assessment

Our implementation for reference-free map quality assessment is based on a variational

autoencoder that can assess 2-D occupancy grid maps, as also described in D3.2 and D3.4.

Based on an ablation study, we have that the following network design produces

good results. The encoder network first downsamples the patch with two blocks of 2-D

convolutions and ReLU layers with 32 and 64 filters, respectively. A kernel size of 3× 3

and stride length 2 is used for each convolution layer. The latent parameter size is 16.

The decoder network has two blocks of transposed convolution and ReLU layers each

with kernel size 3× 3 and stride length 2 with 64 and 32 filters, respectively. The Adam

optimizer with learning rate of 0.001, patch batch size of 128 and 20 epochs is used for

training.

The code can be found at https://gitsvn-nt.oru.se/darko/software/mqa.
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